一、联系旧知,设疑激趣,导入新课。 1、呈现例4中长方体、正方体和圆柱的直观图。 2、提问:这几种立体的体积你都会求吗?你会求其中哪些立体的体积? 启发:大家想不想知道圆柱的体积怎样计算?猜想一下:圆柱体积的大小与什么有关?怎么算? 3、引入:我们的猜想对不对呢?今天我们就一起来探索一下圆柱的体积计算公式。 二、动手操作,探索新知,教学例4 1、观察比较 引导学生观察例4的三个立体,提问: ⑴这三个立体的底面积和高都相等,它们的体积有什么关系? ⑵长方体和正方体的体积一定相等吗?为什么? ⑶圆柱的体积与长方体和正方体的体积可能相等吗?为什么? 2、实验操作 ⑴谈话:大家都认为圆柱的体积与长方体、正方体的体积可能是相等的,而且都等于底面积乘高。那用什么办法验证呢?让学生在小组中说说自己的想法。 提醒:圆的面积公式是怎么推导出来的?我们能不能将圆柱转化成长方体呢? ⑵提出要求:你能想办法把圆柱转化成长方体吗?各小组说出自己的想法,有条件的拿出课前准备好的圆柱,操作一下。 ⑶讨论交流:如果把圆柱的底面平均分成16份,切开后能否拼成一个近似的长方体? 引导想像:如果把底面平均分的份数越来越多,结果会怎么样? 演示一组动画(将圆柱底面等分成32份、64等份、128等份……)课件演示使学生清楚地认识到:拼成的立体会越来越接近长方体。 3、推出公式 ⑴提问:拼成的长方体与原来的圆柱有什么关系? 指出:长方体的体积与圆柱的体积相等;长方体的底面积等于圆的底面积;长方体的高等于圆柱的高。 ⑵想一想:怎样求圆柱的体积?为什么? 根据学生的回答小结并板书圆柱的体积公式: 圆柱的体积=底面积×高 ⑶引导用字母公式表示圆柱的体积公式:V=sh 长方体的体积=底面积×高 ↓ ↓ ↓ 圆柱的体积=底面积×高 用字母表示计算公式V= sh 三、分层练习,发散思维,教学“试一试” ⑴让学生列式解答后交流算法。 ⑵讨论:知道什么条件就一定能算出圆柱的体积了?分别怎么算? (s和h,r和h,d和h,c和h) 四、巩固拓展练习 1、做“练一练”第1题。 ⑴说一说:这两个圆柱中都是已知什么?能算出圆柱的体积吗? ⑵各自练习,并指名板演。 ⑶对照板演,说说计算过程。 2、做“练一练”第2题。 已知底面周长和高,该怎么求它的体积呢?引导学生根据底面周长求出底面积。 五、小结 这节课我们学习了什么?有哪些收获?还有什么疑问? 六、作业:练习三第1~3题。 板书: 长方体的体积=底面积×高 ↓ ↓ ↓ 圆柱的体积=底面积×高 用字母表示计算公式V= sh |